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Abstract
We investigated electron transport characteristics of wide-band polar semi-
conductors with intermediate strength of the electron–phonon interaction.
Electron energy loss to the lattice was calculated as a function of electron
velocity for various materials in the frameworks of (a) a perturbative approach
based on the calculation of scattering rates from Fermi’s golden rule and (b)
a non-perturbative approach based on the path-integral formalism of Thornber
and Feynman. Our results suggest that the standard perturbative treatment
can be applied to GaN and AlN despite the relatively strong electron–phonon
coupling in this material system, with intercollision times of the order of the
period of the phonon oscillation. Our findings also indicate the possibility
for unique long-distance runaway transport in nitrides which may occur at the
pre-threshold electric fields. The polaron ground-state energy and effective
masses are calculated for GaN and AlN as well as for GaAs and Al2O3. An
expression for the Fröhlich coupling constant for wurtzites is derived.

1. Introduction

One of the main factors determining electron transport characteristics in polar semiconductors
is the scattering of the electrons by polar optical phonons. For relatively weak electron–
phonon interactions, when scattering events can be considered as independent, use of Fermi’s
golden rule for the calculation of energy-dependentfrequencies of electron transitions provides
an adequate description of experimentally obtained velocity–field curves. Upon increase of
the interaction, however, the polaronic effects induced by autolocalization of an electron by
the inertial part of the crystal polarization become more prominent and they determine the
character of the scattering. Intensification of the electron–phonon interaction leads eventually
to a situation where the average intercollision time becomes less than the duration of a collision.
Such a strong coupling, therefore, requires taking proper account of the quantum interference
effects and makes the problem of electron drift essentially non-linear. This complicates
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dramatically the theoretical treatment of carrier scattering and field-dependent transport since,
for the given case, the standard perturbation technique is not applicable.

To ensure energy conservation for the short-time perturbations, the inverse scattering
rateτ must be large enough to satisfy the inequalityτ � h̄/�E, where�E is the electron
transition energy. This criterion, however, does not allow one to conclude as to whether or
not a wide class of materials in which the transition energy may become of the order of the
linewidth can be described successfully in the framework of standard perturbation approaches.
To such a class of materials belong, in particular, nitrides of Al and Ga. These semiconductors
have been investigated recently quite intensively due to the fact that a number of their unique
properties can be utilized in the current state-of-the-art semiconductor technology. However,
most attempts to describe scattering processes in nitrides have been undertaken assuming the
validity of the Fermi golden rule. Moreover, despite the possibility of growing the nitrides
of group III in zinc-blende-like structures, their crystal structure at ambient conditions is
wurtzite-like. For wurtzites, it is generally necessary to account for optical anisotropy when
considering the carrier–optical phonon interactions. Since optical phonon spectra of wurtzites
are far more complicated than those of cubic crystals, the majority of theoretical results have
been obtained by ignoring the features of the phonons in optically anisotropic media. Recently,
a formalism has been developed [1] for evaluation of the rates of scattering in bulk wurtzite-
like semiconductors and heterostructures by taking into account peculiarities of the phonon
spectra obtained in the framework of the macroscopic dielectric continuum model [2]. In
view of the anisotropy-induced complexity of the problem, reference [1] took advantage of
the perturbation theory. However, as indicated by the previously discussed considerations, the
validity of such an approach requires independent confirmation.

The present paper examines the applicability of Fermi’s golden rule for describing
adequately the electron–longitudinal phonon interaction in materials with intermediate
polaronic coupling by comparing the field–velocity dependences obtained in the frameworks
of (a) the perturbation theory and (b) the non-perturbative path-integral approach of Thornber
and Feynman [3] (TF). Moreover, the investigation discusses the possibility of unique long-
distance, low-field runaway transport in such materials (particularly in the nitrides of Ga and
Al). An experimental approach is proposed to verify the results obtained in this study.

2. Model

The most systematic and self-consistent approach for evaluating the long-range polaron
ground-state energyG and polaron effective massm0 for both strong- and weak-coupling
limits of electron–phonon interaction has been developed by Feynman [4]. In reference [3],
the problem of electron drift in a parabolic band under steady-state conditions is considered
quantum mechanically [5] assuming that all the energy losses are due to the interaction
of electrons with polar optical modes. Taking advantage of Fröhlich’s polaron model, the
authors have used the path-integral approach developed in reference [4] to eliminate the
lattice coordinates from the momentum balance equation and have obtained an expression for
the magnitude of the electric fieldE that is required to maintain a particular magnitude of
electron expectation, steady-state velocityV at arbitrary temperature and interaction strength
characterized by the coupling constant

α = e2

h̄

(
1

ε∞
− 1

ε0

) [
m∗

2h̄


]1/2

. (1)

Herein, e is the elementary charge. Evaluation ofα requires four parameters: electron
effective massm∗; frequency of the longitudinal phonon
; static dielectric constantε0; and
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high-frequency dielectric constantε∞. All these parameters can be measured experimentally
and they are the only external parameters required for calculation of energy loss per unit
distanceeE versusV .

Thornber and Feynman [3] have calculatedeE(V ) for three coupling constants (α =
3, 5, 7) over a wide range of reciprocal temperaturesβ = h̄
/(kBT ), wherekB is the
Boltzmann constant andT is the temperature of the lattice. The general result of these
calculations can be summarized briefly as follows. For each particularα, eE(V ) has a
maximum at some threshold valueVth. For β > 1, location of this maximum becomes
independent of temperature. ForV < Vth, eE is an increasing function of velocity. This
interval of velocities corresponds to a stable situation when energy loss to the lattice due
to the absorption and emission of optical phonons can be compensated by the energy gained
by the electron from the applied field in such a way that at the givenE, a small deviation�V
of the velocity from its steady-state valueVs creates a force,e[E(Vs)−E(Vs ±�V )], which
stabilizes the velocity atVs . When the external field approaches the valueEth = E(Vth), the
dependence tends to saturate since the magnitude of the energy loss due to interaction with
optical phonons is finite.

The caseE > Eth was excluded from consideration because no steady-state conditions
can be reached for such fields and the electron would accelerate infinitely. The theory, however,
predicts the existence of solutions forV > Vth. In this region,eE is a decreasing function of
the velocity which leads to an unstable steady-state situation. For this case, any deviation of
the velocity fromVs would lead to either deceleration of the electron to velocityV < Vth which
is stable at the given field, or agradually increasing acceleration if�V leads to an increase
in velocity. It is essential that forV > Vth the dependenceeE(V ) can also be interpreted as a
time-dependent relation for the loss of momentum in time in the absence of the external field.
This loss would coincide with the rate of electron momentum loss if the criterion

dV/dt � V/τ ∗ (2)

is satisfied, where, for the long-range interaction with polar optical phonons,τ ∗ can be
estimated as the intercollision time in the weak-coupling limit and the ‘collision’ time in the
strong-coupling limit. It is important for the effects considered in this paper to stress that this
loss would also coincide with the rate of energy loss with distance if, in addition to fulfilment
of the criterion of equation (2), there is appreciable persistence of the initial carrier momentum
[3]. Forβ > 1, eE(V > Vth) becomes independent of temperature as well.

In order to simplify the comparison, and taking into account the fact that the strongest
electron–polar optical phonon scattering is due to emission of the longitudinal optical (LO)
phonons, we will consider the case whereβ ≈ 4. In the nitrides, such a value ofβ would
correspond to room temperature. For GaAs, which we take as a reference point in our
investigation,β = 4 would correspond to lattice temperature of the order of 104 K. Since
βGaAs is slightly higher than 1 at room temperature, the result obtained for maximum energy
loss per unit distance can be compared to the experimentalvelocity–field dependences (see,
for example, reference [7] and citations therein). Indeed, at some threshold fieldEth, the
dependenceV (E) has a maximum caused by transitions of the carriers to an upper valley with a
higher effective mass. In terms of the TF model, these transitions would start to occur when the
energysupply from the external field exceeded the maximum loss to the lattice; i.e., atE � Eth.

Thus, if the average kinetic energy of electrons obtained in the framework of the TF model
atEth does not exceed the energy of band separation and the effects of the increased effective
mass due to non-parabolicity of the� band can be neglected, the value of the argument at the
maximum of theV (E) dependence has to coincide with the field which corresponds to the
extremum of theeE(V ).
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Under the assumptions made above, we use a simple model (SM) for the estimation of
energy loss to the lattice in the framework of the perturbation theory. In this model, we
calculate the dependence of the scattering rate 1/τ due to the emission of LO phonons on a
single-electron kinetic energyE using Fermi’s golden rule. For an optically isotropic material,
the scattering rate is [6]

1

τ
=

(
2m∗

E

)1/2e2
(Nq + 1)

h̄

(
1

ε∞
− 1

ε0

)
ln

[√
E
h̄


− 1 +

√
E
h̄


]
(3)

whereNq is the phonon occupation number. Then, we assume that a carrier with velocity
V = √

2E/m∗ loses the energy ¯h
 to the lattice in a distanceτV . We must note that such an
estimation is always valid in the weak-coupling limit forV ≈ Vth, where the stable steady-
state situation is realized. Analysis of the momentum balance equation given by Thornber and
Feynman, however, shows that forV > Vth, the approach used in the SM is valid only if the
criterion of equation (2) and requirement of the carrier momentum persistence are satisfied.
The latter requirement is automatically fulfilled in the SM.

Since we consider low temperatures (kBT <h̄
), phonon absorptions are not taken into
account due to the low phonon population. According to a general result from the TF model,
such an approximation will not modify theeE(V � Vth).

3. Results and discussion

3.1. Limiting cases

The energy loss per unit distance versus the electron velocity calculated for GaAs at room
temperature in the framework of the model which uses Fermi’s golden rule is depicted in
figure 1 by the thin solid line. As anticipated, the maximum of the dependence is in a
good agreement with the experimental data which give the maximum ofV (E) atE ≈ 3.4–
3.9 kV cm−1. One should note that since calculations are made in a one-electron approximation
and for a single parabolic band, they overestimate the velocity obtained at the maximum. The
experimentally measured values at the maximum ofV (E) [7] reflect the averaging of the
velocities over bands with different effective masses as well as effects of non-parabolicity.

The curve calculated in the SM at 104 K (β = 4) is given by the thick solid line. The
eE(V ) dependence computed forβ = 4 in the framework of the TF model (upper dashed
line) exhibits a maximum located at significantly higher fields. This disagreement appears in
addition to the well known fact that in the weak-coupling limit the low-field, low-temperature
mobility calculated from standard Boltzmann treatment does not agree with the mobility which
follows from the TF model [3]. The discrepancy can be attributed to the fact that the zero-order
distribution for the electrons in the TF model reduces to a drifted quasi-Maxwellian in the
weak-coupling limit. An essential requirement for such a distribution to be valid in the given
case is the presence of a high electron concentration and strong electron–electron interactions,
which provide randomization of the direction of electron momentum between the scattering
events [8, 9]. The latter type of interaction is not included in the TF model. In the weak-
coupling limit of electron–phonon interaction, this leads to a paradoxical result: the model
predicts a distribution valid for the randomized, or three-dimensionalcarrier momenta whereas
the actual motion of the carriers in the near-threshold fields is essentially one-dimensional.

Two factors contribute to this type of motion: the inversely proportional dependence of
the emission probability on the square of the magnitude of the emitted phonon momentum
which follows from the Coulombic nature of the interaction, and the orientational influence
of the external field on the direction of carrier momentum. These factors lead eventually to
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Figure 1. The energy loss per unit distance versus electron velocity in GaAs. Perturbative model:
room temperature—thin solid line;T = 104 K—thick solid line. TF model:T = 104 K—upper
dashed line;T ≈ 20 K—dash-dotted line. Corrected TF model:T = 104 K—lower dashed line.
Polaron parameters are given in the inset.G, ν, andω are given in units introduced by Feynman:
h̄ = 
 = m∗ = 1.

the focusing of carrier motion in the direction of the electric field when the intercollision time
exceeds the duration of a single collision. The focusing effect has been considered in detail by
Dumke [10] and has to be taken into account in order to avoid a large overestimation (by about
an order of magnitude) of energy losses that can be introduced when using the Maxwellian
distribution [9, 11].

The failure of the TF model to fit the low-field mobility, as well as the discrepancy detected
in this paper, may be understood from the following consideration. In order to avoid extreme
complexity in calculations and to eliminate the lattice coordinates from the path integral,
Feynman used a harmonic potential instead of the Coulomb potential in the expression for the
trial action [4]. In such an approach the polarongroundstate and effective mass can be obtained
quite precisely since, for these quantities, consideration of thermal electrons in a polar crystal
can be utilized. In this case, no directional dependence for the carrier momentum is involved
and the variational principle calculations of the influence functional [4] can be accomplished
with high accuracy, introducing the fitting parameters in order to compensate for the potential
replacement when minimizing the polaron energy. Since the same path-integral approach
is the basis of the TF model, we suggest that in the weak-coupling limit the lack of exact
accounting for the interaction potential leads to the observed discrepancy: the dependence of
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the scattering probability on 1/q2 is virtually eliminated and, consequently, the focusing of
the carrier movement in the direction of the external field is underestimated.

In the case of strong coupling, the TF model provides a good explanation for the
experiment. In figure 2 we depict the energy losses calculated for Al2O3. The maximum
of the dependence obtained in the TF model (dashed curve) is in excellent agreement with the
experimentally obtained maximum losses in this material, 0.03 eV Å−1 [14]. We emphasize
that for this case, the directional persistence of the carrier momentum disappears due to the
strong electron–phonon interaction. Since forα > 1 the intercollision time becomes less
than the duration of the collision, the motion of carriers again becomes three-dimensional.
The almost simultaneous carrier ‘collisions’ with many phonons eventually lead to the
randomization of carrier momentum even in the presence of an external field.
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Figure 2. The energy loss per unit distance versus electron velocity in Al2O3 at room temperature.
Perturbative model: solid line; TF model: dashed line. Polaron parameters are given in the inset.
G, ν, andω are given in units introduced by Feynman: ¯h = 
 = m∗ = 1

Unlike the TF model, the SM uses the Fröhlich interaction Hamiltonian derived on the
basis of the Coulomb potential. Consequently, it explicitly takes theq−2-dependence of the
transition probability and, related to this dependence, field-induced focusing of the carrier
momenta into account. Conservation of energy and momentum, valid in the weak-coupling
limit, require the angleγ between the initial momentum of the carrierki and the momentum
of the emitted phonon

q = ki cos(γ )±
√
k2
i cos2(γ )− 2m∗
/h̄

to be no more than arccos(
√
h̄
/E). Considering the equi-energy surfaces in momentum

space, one can show that a carrier with energy of about 2¯h
 (near the maximum ineE(V ))
oriented initially in the direction of the external field will change the direction of movement
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after emission of a phonon by no more than arctan[sin(γ )/(2 − cos(γ ))] ≈ 20◦. This small-
angle scattering facilitates fast orientation of the momentum (in the direction of the external
field) between the scattering events if these events are separated in time and space.

Although the large-angle scattering events, which lead to the appearance of carriers with
negative final momentum, are included in equation (3), we have ignored their influence on
the development of the focusing effect. These scattering events require significantly largerq,
so the probability of these transitions is relatively small. Moreover, estimating the maximum
deviation angle in the previous example we have assumed an isotropic carrier distribution in
the momentum space. Focusing, however, will lead to a strongly anisotropic (streaming-like)
distribution [9, 12] resulting in a decrease of the magnitude of allowed values ofγ as well as a
sharper separation between momenta magnitudes of phonons emitted to small and large angles.
Finally, the validity of our assumptions is strongly supported by the good agreement between
the extremum ineE(V ) and the values of the argument at maximum ofV (E) obtained by
Monte Carlo calculations and experimental measurements [7]. At the extremum of the field,
strong anisotropy of the distribution is achieved due to the strong field-related orientational
effect.

Because the TF model cannot account for the strong anisotropy of the carrier transport, it
overestimates the energy losses to the lattice in the weak-coupling limit. Two facts indicate
this overestimation. First, the argument at the extremum of theV (E) characteristics known
for GaAs is located at a field which is almost four times below the value predicted by the TF
model. It is important to stress that physically the experimental value ofEth straightforwardly
shows the extremal value of the energy losses to the lattice, i.e., the maximum ofeE(V ).
Second, since the TF model takes into account phonon absorption, one can estimate the low-
field mobility and compare it to the experimentally known values. Here again, the TF model
gives a value of≈5×104 cm2 V−1 s−1 which is almost 2 timessmaller than the experimentally
observed values atT ≈ 100 K [13].

In order to resolve this discrepancy, one can suggest—in analogy to the classical case—
that at the same electron temperature, the reduction of the dimension would correspond to
a reduction in the average carrier energy. Since the deviation of the direction of scattered
electron momentum relative to the direction of the electric field is small but finite, for the
weak-coupling limit we have reduced the energy scale in the TF model by a factor of two in
order to match the maxima. This corresponds to decreasing the velocity and energy losses
by factors of 21/2 and 23/2, respectively. The corrected curveeE(V ) is shown by the lower
dashed line in figure 1. It is important to note that this rescaling in energy not only fits the
maxima, but also provides consistency with the experimental value of the low-field mobility,
≈8 × 104 cm2 V−1 s−1.

The differences between the shapes of the curves obtained in the SM and the TF model
for GaAs occur for the following reasons. The former model considers only the emission
mechanism, whereas the latter model also takes into account absorption. As shown in figure 1
by the dash–dotted line calculated for the uncorrected case of the TF model forβ ≈ 21,
elimination of phonon absorption by reducing the lattice temperature yields the same slope
of eE(V < Vth) as in the simple model. As expected, for this temperature interval, the
temperature decrease does not affect the shape of the curve at and beyond the maximum.
This fact clearly indicates that forβ > 1, phonon absorption does not influenceeE(V ) for
V � Vth. ForV > Vth, the discrepancy ineE(V ) between the models appears to be due to
the relatively high value of dV/dt in the unstable region. In the framework of the TF model,
one can estimate this value byeE/m0, wherem0 can be obtained asm0 ≈ m∗ν2/ω2; ν andω
are the parameters of the TF model. We have computed these parameters from minimization
of the free energy at zero temperature [4]. Our estimates show that the value of the derivative
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would be much less thanV/τ ∗ only for V ∼ 109 cm s−1. Thus, the simple model loses its
validity for GaAs whenV > Vth. Nevertheless, as follows from the previous discussion, the
position of the maximum ofeE(V ) can be used as a reference point in our comparison.

3.2. Intermediate case: nitrides

Due to the optical anisotropy inherent to wurtzites, the coupling parameter of polaron theory
α becomes dependent on the angleθ between the phonon wavevector and the optical axis.
Assuming thatε∞

z = ε∞
t , we have derived this dependence in the framework of the dielectric

continuum model [1] as

α(θ) = e2

ε∞


√
m∗

2(h̄
)3

[
ω2
Lz − ω2

z(

2 − ω2

z

)2 cos2 θ +
ω2
Lt − ω2

t(

2 − ω2

t

)2 sin2 θ

]−1

(4)

whereωLz,ωz,ωLt , andωt are the characteristic frequencies of the A1(LO), A1(TO), E1(LO),
and E1(TO) modes, respectively. The phonon frequency as a function ofθ can be obtained
from the dispersion relation for the extraordinary bulk phonons in a uniaxial crystal [2]. The
dependenceα(θ ) calculated for GaN is shown in figure 3. One can see that the dependence is
not very strong and all the available values ofα are in the interval [0.44–0.49]. Due to this,
we assume that even for the wurtzite-phase nitrides the estimates can be made taking a single
value of the coupling constant from this interval.

0.0 0.5
θ (π)

0.44

0.45

0.46

0.47

0.48

α(
θ)

Figure 3. The dependence of the polaron coupling parameterα on the angle between the phonon
wavevector and the optical axis in GaN.

To obtain theeE(V ) dependence in the TF model we have takenα = 0.46. This value is
close to the average value ofα(θ ) and corresponds to the energy of the LO phonon calculated
for GaN in the cubic phase [15]. The energy of the LO phonon in cubic AlN is taken to be
113 meV which is—as for the GaN case—between the energies of the A1 and E1 LO modes in
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room temperature. Perturbative model: AlN—upper solid line, GaN—lower solid line; TF model:
AlN—dash-dotted lines, GaN—dashed lines. Thin and thick broken curves show the uncorrected
and corrected dependencies, respectively. Polaron parameters are given in the insets.G, ν, andω
are given in units introduced by Feynman: ¯h = 
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the wurtzite phase [2]. The scattering rates are calculated according to the formalism developed
in reference [1]. A comparison of the dependences obtained for the nitrides is given in
figure 4. Again, the maxima obtained in the SM correlate very well with the threshold electric
fields of theV (E) dependences computed using the Monte Carlo technique [16] for a three-
valley model of the conduction band: 140 kV cm−1 for GaN and 450 kV cm−1 for AlN. In
order to match the maxima one needs to usethe same reduction of the energy scale when
calculating the energy losses in the TF model as for the case of GaAs. This fact indicates that
the focusing effects are of similar nature and magnitude in all three materials. Additionally,
one can see that the shapes of the dependences forV > Vth are almost the same. This
agreement between the simple and the TF models is due to the extremely short intercollision
times,τ ∼ 10−14s [1]. The increase of the polaron effective mass cannot compensate for
the increase in the energy loss near the threshold value and, therefore, cannot reduce dV/dt .
Nevertheless, due to frequent collisions, the criterion dV/dt � V/τ ∗ is satisfied for the
nitrides even atV → V +

th . Since appreciable persistence of electron momentum is inherent to
the SM, the agreement discussed here provides additional support for our assumptions.

The low-field mobilities estimated from the corrected TF curves are also in excellent
agreement with mobilities known for the materials considered, whereas uncorrected curves
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of the TF model give the valuesreduced by a factor of 2. As follows from figure 4, the
corrected TF model predicts a low-field mobility of about 1800 cm2 V−1 s−1 in GaN and
600 cm2 V−1 s−1 in AlN. Recent calculations of mobility restricted by carrier scattering
with polar LO phonons in GaN give the value of≈2000 cm2 V−1 s−1 (see, for example,
reference [17] and citations therein). For AlN, variational principle calculations [18] give for
this mobility the value 600 cm2 V−1 s−1 (see figure 8 of reference [18]).

Finally, to demonstrate that the agreement between the SM and corrected TF model is
not accidental but follows from the carrier focusing effect, we have presented in figure 2 the
losses calculated in the perturbative model for Al2O3 (solid line). One can see that no energy
scale reduction can fit the dependences. Since for this case ofα > 1 the perturbation theory
cannot be applied, the maximum loss obtained in this model is about an order of magnitude
below the true value.

The comparison made here has allowed us to conclude that for materials for which
τ
 � 1, the application of the Fermi golden rule to explain transport phenomena is almost as
good as for materials traditionally handled with perturbation theory, i.e., for the materials for
which a much stronger criterion,τ
 � 1, is satisfied: almost the same energy rescaling of
the TF model is required for GaAs, GaN, and AlN. The error introduced by the application of
perturbation theory for nitrides is small and can be neglected in most estimations at least for
β > 1.

3.3. Low-field runaway transport

As follows from the previous discussion, the application of the TF model for the calculation of
energy losses per unit distance requires correction for the essential anisotropy of carrier motions
in the weak-to-moderate-coupling limit. In our treatment, this correction was made by simple
energy rescaling. Remarkably, using just this correction allowed us to describe adequately
the low-field mobilities, threshold fields, and energy losses by high-velocity carriers for all
three materials considered herein. Since the modified TF model provides reasonable values
for all of these quantities, we would like to emphasize another important result which follows
from the application of the rescaled TF model to the explanation of dissipative transport in
the nitrides. Figure 5 represents the dependencies of the energy losses on the electron kinetic
energy obtained in the framework of the corrected TF model at room temperature for the three
materials considered: GaAs, GaN, and AlN. In the figure, the vertical arrows indicate the
energy of the closest upper valley in the corresponding conduction band. The picture shows
clearly the possibility of achieving unique pre-threshold-field runaway transport in the nitrides.
Indeed, let us consider a GaN sample in an external electric field of 100 kV cm−1. As shown
in the figure, the two steady-state solutions for the electron energy would correspond to such a
situation. One of the solutions lies in the regionV < Vth and, consequently, it reflects a stable
solution with respect to the electron energy fluctuations. Another one falls into the unstable
area,V > Vth.

Suppose an electron is injected into the sample with an energy somewhere in between
the energy which corresponds to the second, unstable, solution and the threshold energy. In
this case, since the energy losses to the lattice would exceed the energy gain from the external
field, the electron would decelerate until the stable solution at the given field was reached. If,
however, the energy of the injected electron just slightly exceeds the value of the high-energy
steady-state solution, the electron would accelerate, moving downwards on the unstable branch
of the dependence, until it gained enough energy,E∗, to appear in the nearest upper valley
of the conduction band. The magnitude of the acceleration would gradually increase due to
the increasing difference between the force caused by the external field,F = 100 keV cm−1,
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Figure 5. The energy loss per unit distance versus electron kinetic energy. Vertical arrows indicate
the energy of the closest upper valley in the corresponding conduction band.T = 300 K.

and the force caused by energy losses to the lattice represented by theeE(E) dependence. In
order to estimate the minimum runaway lengthLr , we have assumed that the energy of the
injected electron is 0.7 eV and that the maximum force,F − eE(E∗), is constantly applied to
the carrier. Under this assumption, we obtainedLGaN

r > 220 nm.
It is easy to see that because the intervalley separation in AlN is smaller, the effect in this

material is expected to be not as strong as in the previous case. Assuming an injection energy
of 0.31 eV and applying a field of 300 kV cm−1, we getLAlN

r > 39 nm. Our results also show
that the previously discussed runaway transport cannot be achieved in GaAs due to the small
intervalley gap and broad peak in theeE(E) dependence.

The results presented in this paper were obtained ignoring non-parabolicity effects. These
effects, however, would not change our main findings qualitatively. Indeed, investigating the
applicability of the Fermi golden rule for theoretical treatment of wide-band semiconductors
with α � 1, we have extracted the ‘pure’ effect by comparing two models which use a single
parabolic band. On the other hand, the predicted low-field runaway effect can occur at electron
energies of the order of the LO phonon energy and higher. At these energies (about 0.1 eV for
both materials), the non-parabolicityof the conductionband is expected to be negligible in AlN
(energy gap 6.2 eV) and very small in GaN (energy gap 3.5 eV). Additionally, the impact of
non-parabolicity on the possibility of realizing low-field runaway transport is not completely
clear. It is believed that relatively strong non-parabolicity would, in general, tend to suppress
the runaway effect. We would nevertheless like to point out that the TF model predicts that upon
increasing the carrier effective mass, proper account for the polaronic coupling would lead to
(a) a shift of the maximum ofeE(V ) to smaller velocities and (b) a faster decrease ofeE(V )

in the unstable region—both factors are favourable to the occurrence of low-field runaway.
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Since the simple perturbative model used here ignores not only phonon absorption but
also backscattering, one can expect that taking these two effects into account would lead to
some increase in energy losses and a shift ofEth toward the uncorrected values of the TF
model. However, the good agreement between the maxima obtained in our simple model
and the fields at maxima ofV (E) calculated using the Monte Carlo technique for all three
materials (experimentally measured for GaAs and GaN [19]) strongly indicates that for the
semiconductors and temperatures considered these effects are not crucially important and,
consequently, they cannot lead to an increase ofEth which would be strong enough to suppress
the expected low-field runaway. The possible magnitude of such a shift can be estimated
from the comparison of the threshold field obtained from the SM (≈140 kV cm−1) and that
measured experimentally in reference [19] (≈190 kV cm−1). It is obvious that this shift is
much smaller than that predicted by the unscaled TF model (threshold field:≈400 kV cm−1).

In order to improve the accuracy of the expected quantities, further investigation is
required. We believe, however, that the best confirmation of the conclusions made in this
paper can come only from experiment. Our analyses provide guidelines for experimentalists
and indicate the possibility of observing this effect in wide-band polar semiconductors.

The abstract possibility of low-field runaway transport was mentioned initially by
Thornber and Feynman [3]. Our results suggest that nitrides of Ga and Al promise to be
materials where such transport may actually be realized. Detection of this effect in nitrides
would prove straightforwardly the applicability of perturbative treatment for these materials.
It follows from the fact that the two models, the SM and the modified TF model, provide
nearly the same values foreE(V � Vth). On the other hand, the low-field runaway cannot be
expected from the predictions of the non-modified TF model where, in order to realize this
effect, the energy of the injected carrier would have to exceed the energy of the intervalley
separation.

4. Summary

In present paper, we have compared the energy losses to the lattice calculated for different
polar semiconductors within the frameworks of both the perturbative and the non-perturbative
approaches of Thornber and Feynman. The results of this comparison are analysed taking
into account available experimental data. We have revealed that—in the weak-coupling limit
of the electron–phonon interaction—the TF model not only fails to explain the low-field,
low-temperature mobilities observed experimentally and predicted by the perturbation theory,
but also strongly overestimates the maximum values of the energy losses to the lattice. Taking
into account the universal character of the approach used by Thornber and Feynman, we have
assumed that the only source of this discrepancy is in the replacement of the Coulomb potential
by a modified harmonic potential which results in a drifted quasi-Maxwellian distribution of
carriers in the weak-coupling limit and, consequently, essentially underestimates the field-
induced focusing of the carrier momenta inherent to the case where a finite intercollision time
can be introduced. In order to eliminate the discrepancy, we have introduced into the TF model
an estimated reduction of the energy scale to account for the actual quasi-one-dimensional
carrier movement. We have found that at the same reciprocal lattice temperature, the same
energy scale reduction provides good agreement between the TF model, perturbative model,
and the experiments that we know of for GaAs and GaN (variational principle and Monte
Carlo calculations for AlN). We have shown that in the strong-coupling limit, no energy
rescaling can lead to an agreement between the models, since for this case the original TF
model is correct and the perturbative model is not valid. This result suggests that at least at
temperaturesT<h̄
/kB , application of the Fermi golden rule for calculation of the scattering
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rates in nitrides, whereτ
 ≈ 1.5, is as appropriate as application of this standard perturbative
treatment for the materials where the well known criterionτ
 � 1 is satisfied.

Experimental confirmation of this finding would dramatically simplify the analysis of
transport phenomena in the wide-band polar semiconductors with intermediate magnitude of
the polaron coupling factor,α � 1. On the basis of the results of this paper, we have proposed
such an experiment. The estimates of the field-dependent electron energy dissipation made
within the frameworks of both the modified TF model and the SM for AlN, GaN, and GaAs
show that the pre-threshold low-field runaway electron transport can be realized in the nitrides
only if the perturbative treatment is adequate for the modelling of the electron transport in
these materials. The conditions for the realization of such transport can be formulated as
follows:

(a) the energy of the injected carrier should exceed the energy which corresponds to the
solution of the momentum balance equation located on the unstable branch ofeE(V );
and

(b) the separation between the energy of the injected carrier and the energy of the bottom of
an upper valley must be high enough to provide a finite value of the runaway length—it
must be at least a few times higher than the energy of the polar optical phonon; this effect
cannot be expected from predictions of the non-modified TF model since, for this case,
the energy of the injected carrier has to exceed the intervalley separation.

The accurate quantitative description of low-field runaway transport requires simultaneous
incorporation of conduction band-structure details and polaronic effects as well as proper
accounting for other scattering mechanisms. Solution of this problem is an extremely
complicated theoretical task. The effect predicted in this paper may, however, be observed
experimentally in a short sample with lengthL < Lr . Experimental detection of this effect in
nitrides would prove the applicability of the perturbative treatment for adequate explanation
of electron transport in these materials.

Polaron ground-state energies and effective masses are calculated for GaN and AlN as
well as for GaAs and Al2O3. An expression for the Fröhlich coupling constant in wurtzites is
derived.
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